برای انجام پروژه از طریق تلگرام و ایمیل با ما در ارتباط باشید.
telegram: @powerelectronic4u
کانال تلگرام پاورالکترونیک: (دانلود پروژه رایگان)
telegram: @powerelectronic4all
آدرس ایمیل سایت:
آدرس اینستاگرام:
سیستم های قدرت مدرن برای عرضه توان قابل اطمینان به مصرف کننده و بارهای مختلف طراحی شده اند. نیروگاه های تولید برق به دلیل مسائل زیست محیطی، اقتصادی و ایمنی در مکانهایی دورتر از مصرف کننده قرار گرفته اند. بنابراین، شبکه خطوط انتقال برق در ولتاژهای خیلی بالایی برای انتقال توان به بهره برداری می رسند. علاوه بر انتقال توان به مصرف کننده، خطوط انتقال ممکن است باعث اتصال چندین شبکه قدرت بزرگ شوند که اصطلاحا به آن سیستم های قدرت بهم پیوسته می گویند. این امر جدا از پیچیدگی که در سیستم به وجود می آورد، باعث افزایش قابلیت اطمینان و همچنین مسائل مربوط به بازار برق می شود.
۲-۱- اساس کارکرد شبکه های انتقال توان
اکثر خطوط انتقال که بصورت AC هستند، تحت ولتاژهای مختلفی عمل می کنند. شبکه های توزیع در ولتاژهای پایین عمل میکنند در حالیکه شبکه های بزرگ دارای ولتاژهای بالایی هستند. خطوط انتقال با ولتاژهای مختلف توسط ترانسفورماتورها به یکدیگر متصل می شوند. خوشبختانه خطوط انتقال ac دارای خاصیت کنترل توان ذاتی هستند که توسط توان در ابتدا و انتهای خط تعیین می شود. بعنوان مثال، یک خط انتقال توان را در نظر بگیرید که بین یک نیروگاه و مصرف کننده قرار گرفته است که در شکل ۱ نشان داده شده است. با فرض اینکه خط بدون تلفات باشد (R=0) روابط زیر بر مدار حاکم است.
در رابطه بالا، X راکتانس سری خط است. V1 و V2 به ترتیب ولتاژ سمت ارسال و ولتاژ سمت دریافت می باشند. در رابطه بالا اختلاف زاویه ولتاژها میزان توان اکتیو انتقالی را مشخص می کنند و اختلاف دامنه ولتاژها میزان توان راکتیو انتقالی در خط را تعیین می کنند.
قابلیت اطمینان در سمت باسبار با اضافه کردن یک منبع تولید توان همانطور که در شکل ۲ نشان داده شده است قابل بهبود است. همانطور که در شکل ۱ مشاهده می شود، در صورتی که یکی از منابع یا خطوط انتقال از مدار خارج شود، تقاضای بار مصرف کننده توسط خط انتقال دیگر تامین می شود.
در کنار سیستم های انتقال ac، سیستم های انتقال توان HVDC نیز وجود دارند. سیستم های HVDC نیاز به مبدل های الکترونیک قدرت دارند که این باعث گران شدن این سیستم ها می شود. علاوه بر این، سیستم های HVDC برای فاصله های خیلی طولانی و سیستم های خیلی بزرگ استفاده می شوند. این سیستم انتقال توان از مبدل های پشت به پشت استفاده میکند. به این صورت که توان ac را ابتدا به dc تبدیل کرده و سپس این توان dc را به محل مورد نظر (انتهای خط HVDC) منتقل میکند و سپس دوباره در آنجا به ac تبدیل می کند.
۳-۱- کنترل سیلان توان در شبکه های انتقال ac
ما تمایل داریم سیلان توان در خطوط انتقال را برای افزایش ظرفیت انتقال توان کنترل کنیم و یا سیلان توان را تحت شرایط دینامیکی برای تضمین پایداری و امنیت سیستم تغییر دهیم. پایداری سیستم متأثر از افزایش یا کاهش کمی در فرکانس سیستم، نوسانات توان و فروپاشی ولتاژ می باشد. با توجه به شکل ۱، ماکزیم توان انتقالی در حالتی اتفاق می افتد که اختلاف زاویه ولتاژهای ابتدا و انتهای خط ۹۰ درجه باشد که در این صورت رابطه زیر برای انتقال توان ماکزیمم صادق است.
بطور مرسوم، جبرانسازی سری توسط خازن های سری در خط ماکزیمم توان انتقالی Pmax را افزایش می دهد. در این حالت مقدار خازن مورد نیاز برای جبرانسازی توسط رابطه زیر تعیین می شود.
در رابطه فوق Kse درجه جبرانسازی سری است. ماکزیمم مقدار Kse به عوامل زیادی بستگی دارد که مقاومت هادی یکی از آنها می باشد. بطور کلی Kse بیشتر از ۰٫۷ انتخاب نمی شود. استفاده از خازن های سری برای جبرانسازی در خطوط انتقال و افزایش ظرفیت خط انتقال از سال های دور استفاده شده است. با این وجود ۱۰ الی ۱۵ سال بعد، کنترل جبرانسازی سری با استفاده از تریستور برای کنترل سریع سیلان توان در خطوط انتقال معرفی شد. استفاده از راکتورهای کنترل شده تریستوری TCR که به صورت موازی با خازن های جبرانساز Xc قرار داشتند، علاوه بر کنترل جبرانسازی بر مشکلاتی از قبیل نوسانات زیرسنکرون غلبه می کرد. زیرا یکی از مشکلاتی که جبرانسازی سری در خطوط انتقال ایجاد می کند، نوسانات زیر سنکرون یا SSR است.
سیلان توان در خطوط با طول کوتاه توسط ترانسفورماتور شیفت فاز PST کنترل می شود که یک نسبت دور با دامنه واحد دارد. سیلان توان در یک خط انتقال بدون تلفات با یک PST بصورت زیر بیان می شود.
PST کنترل شده بصورت دستی تحت شرایط دینامیکی به اندازه کافی سریع نیست. کلیدهای تریستوری می توانند کنترل سریع مقایر گسسته را با توجه به ساختار PST استفاده شده تضمین کنند. همچنین، ماکزیمم توان انتقالی خط می تواند توسط ولتاژ سمت دریافت خط ac افزایش یابد. زمانیکه یک ژنراتور یک بار با ضریب توان واحد را تغذیه می کند، ماکزیمم توان زمانی اتفاق می افتد که مقاومت بار با مقاوت خط انتقال برابر باشد. قابل ذکر است که V2 با تغییر بار تغییر میکند و بصورت زیر بیان می شود.
با ارائه جبرانسازی دینامیکی توان راکتیو در باس بار (باس ۲)، همانطور که در شکل ۳ قابل مشاهده است، دامنه ولتاژ باس نیز قابل تنظیم است.
ژنراتورهای سنکرون بعنوان یکی از اجزای اصلی سیستم قدرت به حساب می اید. زمانی که قرار است یک ژنراتور سنکرون انتخاب کنیم، با محدودیت های ذاتی توان اکتیو و راکتیو دریافت شده از ژنراتور روبرو هستیم. ژنراتورها معمولا برای یک توان مشخص کیلووات یا مگاوات با ضریب توان ۰٫۸ مورد بهره برداری قرار می گیرند. برای نشان دادن این محدودیت شکل زیر را در نظر بگیرید. همانطور که مشاهده می کنید، توان اکتیو بر روی محور X و توان راکتیو بر روی محور Y نشان داده شده اند. ناحیه سبز رنگ نشان داده شده محدوده کار پایدار ژنراتور سنکرون نسبت به حد توان اکتیو و راکتیو می باشد. اگر توان های اکتیو و راکتیو اندازه گیری شده ژنراتور از ناحیه سبز رنگ خارج شوند، ژنراتور وارد ناحیه ناپایدار می شود.
شکل زیر نیز اطلاعاتی مشابه با شکل فوق نشان می دهد، اما این شکل دارای جزئیات دقیق تری از محل هایی است که عملکرد ژنراتور سنکرون محدود می شود. عملکرد ژنراتور سنکرون در ناحیه سبز رنگ کاملا ایمن بوده و باید از عملکرد ژنراتور سنکرون در نواحی قرمز رنگ جلوگیری کرد. عملکرد ژنراتور در ناحیه زرد رنگ امکانپذیر بوده به شرطی که تحیلل دقیقی در سیستم انجام شود.
در شکل بالا محدوده های مختلف توان راکتیو ژنراتور سنکرون برای ضریب توان پسفاز و پیشفاز نشان داده شده است. مشاهده می شود که منطقه پایدار ژنراتور سنکرون در محدوده بین ضریب توان پسفاز ۰٫۸ تا ۱ قرار دارد. هرچه از این محدوده فاصله بگیریم، با مشکلاتی در بهره برداری مواجه می شویم. به ویژه در محدوده ضریب توان پیشفاز، عملکرد ژنراتور کاملا ناپایدار است. همچنین ضریب توان پسفاز خیلی کم نیز منجر به ایجاد حرارت زیاد در رتور می شود که می تواند باعث آسیبهای جدی به آن شود.
انتخاب ظرفیت ژنراتور مناسب
انتخاب ظرفیت ژنراتور سنکرون می تواند بصورت دستی یا با نرم افزار انجام شود. با این وجود توصیه می شود از نرم افزارهای شرکت های سازنده برای سایزینگ ژنراتور استفاده شود. در انتخاب ژنراتور عوامل متعددی موثر هستند که در ادامه به معرفی آنها می پردازیم.
منبع تغذیه، یک عبارت عمومی برای توصیف مدارهایی است که از یک منبع ولتاژ در دسترس، ولتاژ DC با اندازه ثابت یا کنترل شده تولید میکنند. این ولتاژ DC خروجی در بسیاری از مدارها کاربرد دارد و تأمین آن ضروری است. برای مثال، تراشههای مدار مجتمع (ICها) که در مدارهای الکترونیکی به کار میروند، به یک ولتاژ DC استاندارد با دامنه ثابت نیاز دارند. در این آموزش با منبع تغذیه سوئیچینگ و انواع آن آشنا خواهیم شد.
در حالت کلی، دو نوع منبع تغذیه وجود دارد:
محبوبترین انواع رگولاتورهای ولتاژ ثابت و خطی در دو نوع با ولتاژ خروجی مثبت و ولتاژ خروجی منفی موجود هستند. ولتاژ خروجی این دو نوعِ مکمل، دقیق و پایدار بوده و در محدوده ۵ تا ۲۴ ولت است که در بسیاری از مدارهای الکترونیکی به کار میرود.
استفاده از تنظیم کنندهها یا رگولاتورهای خطی ولتاژ نسبت به استفاده از مدارهای تنظیم کننده ولتاژی که از قطعات گسسته مانند دیود زنر و مقاومت یا ترانزیستور و حتی آپ امپ ساخته شدهاند عموماً کارامدتر و سادهتر است.
طیف گستردهای از این رگولاتورهای ولتاژِ سه ترمیناله وجود دارند که درون آنها مدارهای تنظیم ولتاژ و محدود کننده جریان تعبیه شده است. رگولاتورهای خطی متغیری نیز در دسترس هستند که ولتاژ خروجی آنها از صفر تا یک مقدار ماکزیمم مشخص قابل تغییر است.
در الکترونیک قدرت، مبدلها یا اینورترها دو نوع رایج و سنتی دارند: مبدل یا اینورتر منبع ولتاژ (یا تغذیه شده با ولتاژ) و مبدل یا اینورتر منبع جریان (یا تغذیه شده با جریان). این دو نوع مبدل معایبی دارند که منجر به معرفی یک پیکربندی جدید به نام مبدل یا اینورتر منبع امپدانس شده است. در این آموزش، اینورتر منبع امپدانس را معرفی خواهیم کرد.
اینورترهای منبع ولتاژ و جریان
شکل ۱ اینورتر منبع ولتاژ (V-Source Inverter) سه فاز را نشان میدهد. یک منبع ولتاژ DC با یک خازن نسبتاً بزرگ موازی شده که مدار مبدل اصلی (پل سه فاز) را تغذیه میکند. منبع ولتاژ DC میتواند باتری، پیل سوختی، یکسوساز دیودی و یا خازن باشد.
۱
در مدار اصلی از شش سوئیچ یا کلید استفاده شده است که هر کدام معمولاً از ترانزیستورهای قدرت و دیودهای هرزگرد تشکیل شدهاند. اینورتر منبع ولتاژ در کاربردهای فراوانی مورد استفاده قرار میگیرد. البته این مبدل معایب و محدودیتهایی نیز دارد:
سیکلوکانروتر (CCV) یک شکل موج AC با ولتاژ و فرکانس ثابت را به شکل موج AC دیگری با فرکانس پایینتر یا بالاتر تبدیل میکند. سیکلوکانورتر این کار را با تجزیه شکل موج خروجی منبع تغذیه بدون لینک DC میانی انجام میدهد.
یک ویژگی کاربردی سیکلوکانورترها این است که از لینک DC در فرایند تبدیل استفاده نمیکنند و به همین دلیل، بازده بالایی دارند. تبدیل با استفاده از کلیدهای الکترونیک قدرت، مانند تریستورها و سوئیچینگ آنها با یک روال منطقی انجام میشود. این تریستورها معمولاً به دو مجموعه جدا میشوند: مجموعه مثبت و مجموعه منفی. هر مجموعه برای هدایت بخشی از شکل موج AC مورد استفاده قرار میگیرد. بنابراین، شارش توان دوطرفه خواهد بود. میتوانیم سیکلو کانورتر را به عنوان یک جعبه سیاه در نظر بگیریم که توان AC با ولتاژ و فرکانس ثابت وارد آن میشود و خروجی آن، توان AC با ولتاژ و فرکانس متغیر خواهد بود.
شماره تماس بنده برای سفارش مقاله،انجام شبیه سازی و طراحی سایت : 8613-611-0990
ایمیل برای درخواست : hw.mohammadi@gmail.com
مشاهده تمامی مقالات در ادامه مطلب
2- ترجمه مقالات تخصصی
3- انجام شبیه سازی ها با نرم افزارهای مهندسی
Matlab, Maxwell, Pspice ، PLC ، Altium designer، Digsilent, Pscad ,Eplan
4- مقاله شبیه سازی شده برای درس تئوری جامع ماشین الکتریکی ، الکترونیک قدرت 1 و 2 ، طراحی مبدل الکتریکی، طراحی ماشین الکتریکی، کنترل فازی، کنترل محرکه الکتریکی و سایر دروس کارشناسی و کارشناسی ارشد برق
برای انجام پروژه از طریق تلگرام و ایمیل با ما در ارتباط باشید.
telegram: @powerelectronic4u
کانال تلگرام پاورالکترونیک: (دانلود پروژه رایگان)
telegram: @powerelectronic4all
آدرس ایمیل سایت:
آدرس اینستاگرام:
انجام پایان نامه و شبیه سازی مقالات برق گرایش قدرت انجام می پذیرد.