عیب یابی دقیق و مهندسی بردهای الکترونیکی، همراه با تجربه بیش دو دهه فعالیت ، زمینه ساز ره آورد الکترونیک در تاسیس استارتاپ ۱۴۰۰ ، با هدف گسترش خدمات تعمیر بردهای الکترونیکی در سراسر کشور بوده است. تعمیر انواع برد های الکترونیکی و سیستم های کنترل تجهیزات صنعتی و پزشکی خاص
شماره تماس و واتس اپ و تلگرام:
09906118613
آموزش الکترونیک مقدماتی
آموزش الکترونیک مقدماتی
آموزش آشنایی با منابع تغذیه سوئیچینگ
آموزش آشنایی با قطعات Active و Passive
آموزش تحلیل مدارات و تشخیص نحوه هماهنگی قطعات
آموزش تعمیرات تخصصی بردهای کولر گازی و اسپلیت
آموزش تعمیرات تخصصی برد ماشین ظرفشویی
آموزش تعمیرات تخصصی برد یخچال
آموزش آشنایی با منابع تغذیه Liner
آموزش کار با مولتی متر و اصول تست قطعات
بیشتر
آموزش آشنایی با روشهای تعمیر و عیب یابی
آموزش تعمیرات تخصصی برد دستگاه های اینورتر دار
آموزش مونتاژ و دمونتاژ بردهای SMD
آموزش مونتاژ و دمونتاژ بردهای DIP
آموزش تعمیر و عیب یابی بردهای الکترونیکی آیفون تصویری
آموزش تعمیرات بردهای پر مصرف در صنعت
آموزش تعمیر و عیب یابی بردهای الکترونیکی smd
آموزش تعمیر و عیب یابی برد الکترونیکی DIP
آموزش طراحی مدار برای قسمت سوخته بردهای تعمیری دورو PCB
آموزش تعمیرات تخصصی برد ماشین لباسشویی
انجام پروژه
شماره تماس تلگرام واتس اپ 09906118613
طراحی مدارات سوئیچینگ در سال 1970 توسط مهندسان الکترونیک مطرح گردید که در ابتدای امر از بازدهی پایینی برخوردار بود ولی در مقایسه با باتریها و منابع تغذیه آنالوگ وزن و حجم کوچکتر ولی در عین حال توان بالایی داشتند. در طرحهای نخستین منابع تغذیه از عناصر ابتدایی نظیر BJT استفاده می شد که این خود باعث کاهش راندمان درحدود 68 % می شد.
با پیشرفت الکترونیک و ایجاد حوزه های تخصصی، نیاز به قطعات الکترونیکی و سریع بیشتر و بیشتر شد و رگولاتور ها هم، چون به عنوان منابع تأمین انرژی و توان دستگاهها و وسایل دیگر استفاده می شدند از اهمیت خاصی برخوردار شدند.
حدود 35 سال قبل با پیشرفتی که در زمینه منابع تغذیه صورت گرفت، طراحی مدارات سوئیچینگ پا به عرصه وجود گذاشت. و به تدریج جهت روبرو شدن با نیازهای مختلف تکامل یافتند و می توان گفت اینگونه منابع، نقش بسزایی در پیشرفت صنعت الکترونیک داشته اند. رگولاتورهای طراحی شده در طراحی مدارات سوئیچینگ برتری های زیادی به رگولاتور خطی دارد که در ادامه بررسی شده است.
طراحی مدارات سوئیچینگ
امروزه منابع تغذیه سوییچینگ جایگاه خاصی در صنعت برق و الکترونیک و مخابرات یافته اند و بدلیل برتری ها و مزایای زیادی که نسبت به دیگر منابع تغذیه دارا می باشند توجه صنعتگران و مهندسان برق را به خود معطوف کرده اند. تا جایی که گروهی از مهندسان الکترونیک در بهبود و کارایی و کیفیت آنها تحقیقات گسترده ای انجام داده اند البته نتیجه این تلاشها پیشرفت روزافزونی است که در ساخت این سیستمها پدید آمده است همچنین پیشرفت در تکنولوژی ساخت قطعات نیز تاثیر بسزایی در ساخت منابع تغذیه سوئیچینگ داشته است.
با پیداش ماسفت های سریع و پرقدرت، تلفات ترانزیستور ی بطور چشمگیری کاهش پیدا کرده است و عمده تلفات در ترانسها خلاصه می شود که برای غلبه بر این مشکل فرکانس کاری مدار را تا حد 1MHz افزایش داده اند.
رگولاتور ها قطعات بسیار مهمی هستند که می توان از آنها برای تأمین انرژی و توان دستگاهها و وسایل دیگر استفاده کرد.
رگولاتور ها به دو نوع عمده تقسیم می شوند که عبارتند از:
1- رگولاتور خطی 2- رگولاتور سوییچینگ
در گذشته از رگولاتور خطی به وفور استفاده می شد و چون به مرور زمان در مصارف مختلف کارآیی و بازده خوبی نداشت به تدریج منسوخ شده و جای خود را به رگولاتور سوییچینگ داد. این منابع از اوایل دهه ی 1970 همزمان با عرضه ی ترانزیستور های قدرت مطرح شدند و به تدریج جهت روبرو شدن با نیازهای مختلف تکامل پیدا کردند.
امروزه این گونه منابع در ابعاد مختلفی همانند ولتاژ ورودی یا توان خروجی بالا و قیمت پایین و… توسعه یافته اند.
برای انتخاب بین یک منبع تغذیه سوئیچینگ یا یک منبع تغذیه خطی می توان بر اساس کاربرد آنها اقدام نمود که دارای مزایا و معایب خاص خود می باشند و بر این اساس یکی از این دو را انتخاب می کنیم و همچنین حوزه های متعددی وجود دارد که تنها یکی از این دو می تواند مورد استفاده قرار گیرد و یا کاربردهایی که یکی از آنها بر دیگری برتری دارد. در زیر مزایا و معایب رگولاتور خطی و رگولاتور سوئیچینگ را بررسی می کنیم.
مزایای رگولاتور خطی
معایب رگولاتور خطی
مدار رگولاتور در طراحی مدارات سوئیچینگ
در شکل فوق ترانزیستور T1 باید از نوع قدرت باشد زیرا باید جریان بالایی را تحمل کند.
نکات عملی در مورد ترانزیستور T1
البته برای بهتر شدن عملکرد یک رگولاتور خطی، می توان حفاظت های ویژه و قطعات ویژه ای را اضافه کرد که به تفصیل این مباحث نمی پردازیم و در همین جا بحث رگولاتورهای خطی را به پایان می رسانیم و بحث در مورد رگولاتورهای سوییچینگ را آغاز می کنیم.
طراحی مدارات سوئیچینگ
مزایای رگولاتور سوئیچینگ
1. افزایش راندمان در حدود 68 % تا 90 % و این موضوع کارکرد ترانزیستور در نواحی و اشباع را به انتخاب حرارت گیر یا خنک کننده و ترانزیستور کوچکتر منوط کرده است
2. به دلیل اینکه قدرت خروجی از یک ولتاژ DC بریده شده که به شکل AC در یک قطعه مغناطیسی ذخیره می شود تأمین می گردد، لذا با اضافه کردن تنها یک سیم پیچ می توان خروجی دیگری را به دست آورد، که در مقایسه بسیار ارزانتر و ساده تر تمام می شود.
3. به دلیل افزایش فرکانس کاری به حدود 50 تا 60 کیلوهرتز، اجزاء ذخیره کننده انرژی می توانند خیلی کوچکتر انتخاب شوند و بدین دلیل از نظر سایز و اندازه کوچک هستند.
4. برخلاف رگولاتور خطی، در توان های خیلی بالا قابل استفاده می باشد.
5. قابلیت افزایش ولتاژ ورودی در خروجی همه موارد ذکر شده در بالا، به کاهش هزینه و توان تلفاتی و افزایش بهره دهی و انعطاف پذیری منجر می شود.
معایب رگولاتور سوییچینگ
تمامی موارد ذکر شده فوق در کاهش کارآمدی و افزایش قیمت مؤثر هستند ولی البته با طراحی شماتیک بهتر قابل بهبود می باشند. تا به حال در مورد مزایا و معایب رگولاتورهای خطی و سوئیچینگ بحث شد و از مطالب فوق می توان نتیجه گرفت که این منابع حوزه های کاری مشخصی را دارند که عموماً برای مدارهای با راندمان بالا و ولتاژ بالا مثل مدارهای تغذیه شونده با باطریهای قابل حمل، منبع تغذیه سوئیچینگ برتری دارد ولی برای ولتاژهای ثابت و کم، منابع تغذیه خطی ارزانتر و بهترند.
همانطور که ذکر شد یک رگولاتور خطی براساس تأمین جریان و ولتاژ مطلوب در خروجی بوسیله یک نیمه هادی قدرت که در حالت خطی بکار گرفته شده است کار می کند که حاصلضرب اختلاف ولتاژ خروجی با ورودی در جریان بار، توانی است که در این عنصر نیمه هادی باید تلف شود که بعضا زیاد است و مهمترین عامل پائین بودن راندمان می باشد.
دلیل این امر، همانطور که در ابتدای بحث رگولاتور خطی ذکر شد عملکرد ترانزیستور در حالت خطی است یعنی جایی که ولتاژ در سر سوئیچ و جریان عبوری آن هر دو زیاد است.
اما یک رگولاتور سوئیچینگ را می توان بعنوان یک منبع خطی در نظر گرفت، در حالی که در یک منبع تغذیه سوئیچینگ ، تغییر سطح ولتاژ خروجی از طریق تغییر در روشن به خاموش یا اصطلاحا زمان کارکرد ( Duty Cycle) ترانزیستور خروجی انجام می گیرد. به دلیل کارکرد ترانزیستور در حالت خاموش و روشن تلفات در نیمه هادی در مقایسه با حالت خطی خیلی کم است. دلیل نامگذاری این منابع به نامهای خطی و سوئیچینگ هم حالت عملکرد عنصر نیمه هادی است.
طراحی مدارات سوئیچینگ
طراحی مدارات سوئیچینگ به دو نوع کلی قابل تقسیم بندی هستند :
Forward .1
Flyback .2
با وجود شباهتهای فراوان، تفاوتهای متمایز کننده ای هم وجود دارد. نحوه عملکرد و چگونگی قرارگیری عنصر مغناطیسی تعیین کننده نوع مدار است.
عناصر اصلی هریک از انواع این منابع عبارتند از: